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Abstract. In the models proposed by Longa and OleS there exist two oppositely magnetised 
equilibrium states, if the temperature is sufficiently low. Spins in the frustrated cells also 
carry a moment, the magnitude of which is 1/45 at zero temperature. 

1. Introduction 

Recently, Longa and Ole6 (1980) studied a family of periodic Ising frustration models 
on the square lattice, in which frustrated squares occupied pairs of neighbouring 
columns and two such pairs were separated by m 3 1 columns of non-frustrated squares 
(figure 1). This distribution of frustration can be realised, for example, by choosing the 
bonds negative along each ( m  + 2)th vertical line and positive otherwise. Applying the 
method of dimers, they calculated the free energy of these models and found a 
singularity at some T = T,(m) >O.  To study the low-temperature behaviour, they 
performed a mean-field calculation which suggested the appearance of long-range 
order in areas of non-frustrated squares. In the present note, this suggestion is verified 
rigorously and it is shown that the spins in the frustrated cells also become partially 
ordered. 

Very recently, Hoever et a1 (1981) extended the discussion to models with arbitrary 
periodic distribution of columns of frustrated squares: they calculated the free energy 
and found a simple and striking condition for the existence of a positive critical 
temperature. The study of the magnetisation is more difficult in this case and will be the 
subject of future work. 

On physical grounds, it is easy to understand why magnetisation sets in at low 
temperatures in the models of Longa and Ole& Let us adopt the choice for the bonds as 
indicated above and consider the ground state spin configurations ( G S )  of the system. 
The U+ = 1 and U- = - 1 configurations are G S ;  in figure 1, full lines of unit length cross 

t On leave from the Central Research Institute for Physics, Budapest. 
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the negative bonds, indicating that they are the ‘wrong bonds’ in CT+ and U - :  those at the 
higher energy level. Consider, for example, U+. A local zero-energy transformation 
(LZET), which consists of flipping several non-neighbouring spins along a vertical line 
with negative bonds, carries CT+ into another G S .  Let F+ be the family of those GS which 
can be obtained from U+ by performing a sequence of LZET and let F- be the 
corresponding family for CT-. Every GS in F+(F-) shows long-range order in the sense 
that every spin outside the negative vertical lines has the value +1 (-l), Clearly, 
-F- = F+ and these sets are disjoint. One expects that F+ and F- are the continuations, 
to T = 0, of oppositely magnetised low-temperature phases. The complication arises 
from the existence of a family Fo of GS which is disjoint from both F+ and F-. The 
elements of Fo can be obtained from those of F+ or F- by flipping whole strips of spins; 
an example is shown in figure 2 .  The ‘strip-flip’ transformation is not local, but it can be 

Figure 2. Wrong bonds in a ground state belonging to Fo 

performed as a sequence of local transformations at a total cost of energy proportional 
to the width of the strip. Therefore, Fo provides us with a channel between F+ and F-, 
available at all small positive temperatures. A simple numerical estimate shows, 
however, that the mixing of F+ and F- via Fo is a negligible effect: it is easy to calculate 
the total number of G S ,  IFtotl, and the number of GS with long-range order, IF+/ + 1F-I. 
Considering a square of N sites, one finds the asymptotic results 

JR J i J / ( m + 2 )  lFtotl= /F+I + IF-1 + /Fol= 2(1+ c ) 

and 

/F+l+ IF-1 = 2 ~ ” ( ~ + * )  

where c = (1 +. \ /5) /2  (see later in the text). Hence, the entropy of the mixing at zero 
temperature is 

lnlFtotl -ln(lF+I + IF-() = [.\/??/(m + 2 ) ]  ln(1 + c?) 
which vanishes in the thermodynamic limit, suggesting that F+ and F- represent 
different low-temperature phases. 

In 0 2, we make this ‘physical argument’ precise. In order to obtain this goal, we 
extend the method of Peierls which cannot be applied to the present problem, either in 
its original form (Peierls 1936), or in a recent generalised version aimed at covering 
cases of frustration (Suto 1980). 

2. Study of the magnetisation 

We consider any model with frustrated squares distributed as discussed above, for some 
m b 1. Let uo be one of the two GS in which the wrong bonds are those along the vertical 
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lines between neighbouring columns of frustrated squares (see figure 1) .  We prove the 
following proposition. 

Proposition. If the temperature is sufficiently low then there exists an equilibrium state, 
belonging to go in the following sense: 

(i) In any typical configuration, U, of this state, one can find an infinite connected set 
of sites over which U = U O .  

(ii) If x is not a common site of four frustrated squares then 

) ( d x  Nu0 > 0 
and goes to 1 with T going to 0. 

then 
(iii) If x is the common site of four frustrated squares (i.e. x is in a frustrated cell) 

( U ( X ) ) ~ ~  = ( l / & ) a o ( x )  O . ~ ~ ~ U O ( X )  

at T = O .  
We may remark the following. 

( 1 )  The equilibrium state belonging to ( T ~  can be generated as the thermodynamic 
limit of probability distributions in finite volumes, if U ( X )  = a o ( x )  on the boundary of 
these volumes. The notation ( * ) u o  refers to this construction. 

( 2 )  Except (iii), the above proposition contains the usual statements which can be 
obtained by a Peierls-type argument. A bound To, below which (i) and (ii) are verified 
and which is common for any m 2 1 ,  can be inferred from the proof; this To is, however, 
a poor lower estimate for the critical temperatures. 

( 3 )  By reason of symmetry, there exists another equilibrium state belonging to -(TO 
in the above sense. Therefore, the properties (i)-(iii) imply the breakdown of the 
(T + -U symmetry of the Hamiltonian. 

To prove the proposition, we consider a finite part V of the lattice, fix the configuration 
c0 outside V and study the equilibrium probability distribution Pv for the configura- 
tions inside. By definition, 

Pv(the configuration is (T in V )  = Zi:uo exp[-P(H(U)-H(c+~))l 

where a(a) contains those bonds ( x y )  for which U ( X ) U ( Y )  = - c r 0 ( x ) a o ( y )  and ZV,, is the 
partition function corresponding to the boundary condition. If for each ( x y )  E a(v) one 
draws a broken line of unit length crossing the bond ( x y ) ,  one finds that a ( ~ )  is 
represented by a collection of closed lines separating the domains of V where U = (TO 

from those where (T = -go (an example for ~ ( c T )  is shown in figure 3). Once (TO is fixed 

Figure 3. The ground state uo and a contour with respect to it. Zero-energy sequences are 
put in parentheses. 
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outside V, there is a one-to-one correspondence between the configurations and the 
collections of closed lines on the dual lattice. Let no denote the set of the wrong bonds 
of go;  these are crossed by full lines of the dual lattice. Now, the sum in the exponent of 
equation (1) has a simple geometric interpretation. The sets a ( ~ )  and no may have 
common bonds which appear in the figure as coinciding full and broken lines; if Id fl sZol 
is the number of common bonds and la - n0l is the number of bonds belonging to a but 
not to no, then 

Here we have assumed that lJxy I = 1. Plainly, 

O C k J C l a l .  (3) 

We say that a set of bonds, r, is a contour if T = d ( ~ )  for some U and if I? is represented by 
a singly or multiply connected line. For any U, a (a)  is the union of maximal connected 
parts, each of them being a contour. If for some x E V we find U ( X )  = -ao(x)  then there 
is at least one contour in a(v) which surrounds x. In the following formulae, r always 
denotes a contour and x E Int a means that some part of a surrounds x. Now let 0 < E < 1 
and x be an arbitrary site in V. Then the following inequalities are true for the 
probability distribution (1): 

PV[v(x) = -g0(x)] si Pv[x  E Int d ( ~ ) ]  

=Ax(&,  > ) + A x ( & ,  <)+A,(O) (4) 

where Pv[T] is the probability that r is a maximal connected component of some a ( ~ ) .  
According to the usual Peierls argument (see e.g. Griffiths 1972), 

A,(&, >) s 1 (1/2)3' e-''='. 
1 2 4  

The second and third sums in equation (4) do not appear if there is no frustration 
present; below we elaborate their estimates. 

Let denote the set of those sites of the dual lattice which are visited by a, and let us 
introduce the notation 

2 = e-2P. 

Then 

where the denominator is just ZV,, and, if some configuration U contributes to the LHS, 
then a(a) = a' U r with one of the a' in the numerator of the RHS. 

It is obviously true that 

c 2 kas* 3 c Zk, .  c Zk,, 
J" J': 2'nf=0 J: fcf 
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which gives us 

P ~ [ ~ ] s z ~ ~ /  C zka. 
J: Icf 

This estimate is valid for any contour r. Then 

First, we show that 

holds for any 

ka=O 

r satisfying the inequalities 

0 < k r <  &Irl. 

2737 

(7) 

For, let r be such a contour. We consider the line representing r (figure 3)  and divide it 
into zero-energy segments (ZES) and purely positive-energy segments (PPES). A ZES is a 
maximal piece of r which begins with a wrong bond, goes on with an alternating 
sequence of good and wrong bonds and is terminated by a good bond (good and wrong 
bonds are elements of r - RO and r n no, respectively). A PPES is a maximal connected 
part of r between two ZES, and therefore it contains only good bonds. The following 
elementary relations hold: 

rr = (number of ZES) = (number of PPES) S kr < E /I'/ 
(11) 

(1  - E)lr//2 < lrn a0l < I~ID, 
and, as a consequence, 

1 ~ Z E S ~  = 2 x (number of wrong bonds belonging to ZES of length 2 4) 
ZESE T,IZES/a4 

2 2(1r n Rol - rr) a (1  - 3&)lrl (12) 

where ~ Z E S ~  denotes the length of a ZES. 
Now consider a ZES of length 21 where I a 2; this goes through the centres af 21 

frustrated squares. These centres surround 1 - 1 sites, XI, . . . , X L - ~ ,  of the lattice 
(denoted by circles in figure 3);  the spins sitting here are in frustrated cells. To obtain 
the estimate (9) we have to calculate nl-1, the number of ground states of these 1 - 1 
spins with the condition that the configuration is go outside them. Clearly, 
{ c T o ( x ~ ) ,  . . . , c~o(x1-1)) is a GS and any configuration not containing the detail 
, . . , -uo(x,) ,  - ( T O ( X ~ + ~ ) ,  . . . is also a GS. It is easy to see that nl satisfies the difference 
equation for the Fibonacci numbers: 

nl+l = 2n1-1+ (nr - nl-1) = nf-1+ nr 

with the initial conditions 

n1 = 2, n2 = 3. (13b) 
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This equation can be solved by the use of the method of generating functions, resulting 
in 

2J3+4  J 5 + 1  ' , 2JJ -4  J F - 1  1 + J J  ' 
n' =-(T) - ( -1)  - ( - 2 ) ' d d  (14) 

5+JJ 5-JJ 
for any 1 a 1. Any ZES the length of which is 21 4 contributes to Itr with a factor nr-l. 
From (12) and (14) one then obtains (9). The bound given in (9) depends only on the 
length of I?. This makes it possible to continue (8)  as 

A x  ( E ,  <) c N'lf(1) (15) 
I 

where NI denotes the number of contours of length 1 which surround x and satisfy (10). 
Now we give an upper bound to this number. It is easy to estimate the number of those 
contours which contribute to Nl and contain a given bond, b, a given number, lo ,  of 
wrong bonds and a given number, r, of ZES. Their number will be denoted by 
Nl(b, lo, r ) .  Starting from b, one can order the 1 bonds of the contour in a sequence so 
that neighbouring bonds join in a site of the dual lattice. Therefore contours cor- 
respond to random walks of length 1, starting from b. In each site along a PPES, there are 
at most three possibilities to continue the walk; once the walk arrives at a ZES, there are 
altogether six possibilities until we can continue with the following PPES: two ways to 
choose the first good bond of the ZES and three to choose the last one. The total length 
of the PPES is 1 - 21,; therefore 

(16) I-2106r 3 l - ( l - ~ ) l  E' N O ,  lo, r )  s 3 . 6 =18"' 

where we have used (11). It follows also from (11) that there are at most E E  and 4 2  
different possibilities for choosing r and lo, respectively. Furthermore, if one starts from 
x and takes 1/2 steps to the right, one certainly crosses at least one bond of any contour 
contributing to N'. Therefore, it is sufficient to choose the starting bond b from a set 
containing 1/2 bonds. These facts and (16) yield 

(17a) N1ss l  E 18"'. 

NI = 0 if 1 < 1 / ~  (17b) 

1 3  2 

Also, (11) gives 

because r r s  1 for any r satisfying (10). Equations (8), (9), (15) and (17) together result 
in 

Ax(&, <) 0 . 4 ~ '  1 (37" X 0.787)'. 
I % l / E  

Suppose now that x is not in a frustrated cell; then A,(O) = 0 and 

P v [ a ( x )  = - a o ( x ) ] S  (1/2)3' e-2pE' + O . ~ E '  c (37" ~ 0 . 7 8 7 ) ' .  (19) 
1 a 4  / S 1 / E  

Choosing E =0.066 and p>3.2,  we find that the sums on the RHS of (19) are 
convergent. Then, from the Borel-Cantelli lemma (see e.g. Feller 1968) it follows that 
with probability one there is only a finite number of contours surrounding x ,  which is 
another way of formulating the percolation property (i) of the proposition. If E is so 
small that A, ( E ,  <) < 3- CY (where a > 0) and p is so large that Ax(& ,  >) < 4 2 ,  then 

P v [ a ( x )  = --(To(x)] S (1 - a ) / 2 ,  
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showing that a moment, parallel to c o ( x ) ,  appears in x .  Finally, if we keep E fixed and let 
p go to infinity, we obtain that 

lim sup Pv[cr(x) = -cr0(x)]  s 0.48' 1 (37" X 0.787)'. (20) 
P-* 121/"  

This inequality is true for any positive E and volume V, implying that c ( x )  = c o ( x )  at 
T = O  with full probability. This concludes the proof of the statement (ii) of the 
proposition. 

The bounds ( 5 )  and (18) are also valid for x not in a frustrated cell. However, A, (0) 
is not zero in that case. Let y ( x )  denote the shortest possible contour around x ,  that is, 
the contour of the four edges separating x from its nearest neighbours. Now, ky(,) = 0 
and k r >  0 for any other contour around x .  We can write therefore 

Below we show that 

lim Pv[-y(x)] = 2/(5 +&) = 0.276 
V-00 

at T = 0. Indeed, for p = +CO, 

and the substitution of (23) into (6) gives 

kd=O 

In the numerator, the summation runs over those GS which coincide with eo outside V 
and -CO on the site x. In the denominator, we find the same summation except the 
restriction on c ( x ) .  In every GS occurring in these summations the configuration 
outside the frustrated cells coincides with r0. The number of GS is therefore the product 
of the numbers of GS in each column of frustrated cells. The contribution of every 
column cancels out in (24), except that of the one containing x. If, in this column, there 
are ml sites above x and m2 below it, then 

Pv [ y b  )I = n m l -  1 nmz- 1 / nml+mz+ i (25)  

where nr is given by (14). If both ml and mz go to infinity, we obtain the limit (22). The 
third part of the proposition follows from (22) and the fact that 

3. Concluding remarks 

We have rigorously shown that frustrated systems described by the above models 
become magnetically ordered at sufficiently low temperatures. An interesting finding is 
that ground states which locally transform into each other may not be equivalent from a 
statistical point of view, Spins in the frustrated cells become magnetised though their 
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moments are not fully saturated at zero temperature. Therefore, a periodic oscillation 
of the magnetisation appears in the horizontal direction. The continuity, at T = 0, of 
the moments in the frustrated cells still needs a proof. 
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